Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates

Identifieur interne : 000235 ( Chine/Analysis ); précédent : 000234; suivant : 000236

Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates

Auteurs : RBID : Pascal:13-0186052

Descripteurs français

English descriptors

Abstract

The first GaS nanosheet-based photodetectors are demonstrated on both mechanically rigid and flexible substrates. Highly crystalline, exfoliated GaS nanosheets are promising for optoelectronics due to strong absorption in the UV-visible wavelength region. Photocurrent measurements of GaS nanosheet photodetectors made on SiO2/Si substrates and flexible polyethylene terephthalate (PET) substrates exhibit a photo-responsivity at 254 nm up to 4.2 AW-1 and 19.2 AW-1, respectively, which exceeds that of graphene, MoS2, or other 2D material-based devices. Additionally, the linear dynamic range of the devices on SiO2/Si and PET substrates are 97.7 dB and 78.73 dB, respectively. Both surpass that of currently exploited InGaAs photodetectors (66 dB). Theoretical modeling of the electronic structures indicates that the reduction of the effective mass at the valence band maximum (VBM) with decreasing sheet thickness enhances the carrier mobility of the GaS nanosheets, contributing to the high photo currents. Double-peak VBMs are theoretically predicted for ultrathin GaS nanosheets (thickness less than five monolayers), which is found to promote photon absorption. These theoretical and experimental results show that GaS nanosheets are promising materials for high-performance photodetectors on both conventional silicon and flexible substrates.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0186052

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates</title>
<author>
<name>PINGAN HU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Lab of Microsystem and Microstructure, Harbin Institute of Technology, Ministry of Education, No. 2 YiKuang Street</s1>
<s2>Harbin, 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin, 150080</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LIFENG WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Lab of Microsystem and Microstructure, Harbin Institute of Technology, Ministry of Education, No. 2 YiKuang Street</s1>
<s2>Harbin, 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin, 150080</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoon, Mina" uniqKey="Yoon M">Mina Yoon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road</s1>
<s2>Oak Ridge, Tennessee 37831</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Oak Ridge, Tennessee 37831</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIA ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Lab of Microsystem and Microstructure, Harbin Institute of Technology, Ministry of Education, No. 2 YiKuang Street</s1>
<s2>Harbin, 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin, 150080</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEI FENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Lab of Microsystem and Microstructure, Harbin Institute of Technology, Ministry of Education, No. 2 YiKuang Street</s1>
<s2>Harbin, 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin, 150080</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XIAONA WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Lab of Microsystem and Microstructure, Harbin Institute of Technology, Ministry of Education, No. 2 YiKuang Street</s1>
<s2>Harbin, 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin, 150080</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZHENZHONG WEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Lab of Microsystem and Microstructure, Harbin Institute of Technology, Ministry of Education, No. 2 YiKuang Street</s1>
<s2>Harbin, 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin, 150080</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carlos Idrobo, Juan" uniqKey="Carlos Idrobo J">Juan Carlos Idrobo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Materials Science and Technology Division, Oak Ridge National Laboratory, One Bethel Valley Road</s1>
<s2>Oak Ridge, Tennessee 37831</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Oak Ridge, Tennessee 37831</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miyamoto, Yoshiyuki" uniqKey="Miyamoto Y">Yoshiyuki Miyamoto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2</s1>
<s2>1-1-1 Umewno, Tsukuba 305-8568</s2>
<s3>JPN</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>1-1-1 Umewno, Tsukuba 305-8568</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Geohegan, David B" uniqKey="Geohegan D">David B. Geohegan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Lab of Microsystem and Microstructure, Harbin Institute of Technology, Ministry of Education, No. 2 YiKuang Street</s1>
<s2>Harbin, 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin, 150080</wicri:noRegion>
</affiliation>
</author>
<author>
<name>KAI XIAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road</s1>
<s2>Oak Ridge, Tennessee 37831</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Oak Ridge, Tennessee 37831</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0186052</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0186052 INIST</idno>
<idno type="RBID">Pascal:13-0186052</idno>
<idno type="wicri:Area/Main/Corpus">000D65</idno>
<idno type="wicri:Area/Main/Repository">000B89</idno>
<idno type="wicri:Area/Chine/Extraction">000235</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Charge carrier mobility</term>
<term>Effective mass</term>
<term>Electronic structure</term>
<term>Ethylene terephthalate polymer</term>
<term>Experimental result</term>
<term>Gallium arsenides</term>
<term>Graphene</term>
<term>Indium arsenides</term>
<term>Modeling</term>
<term>Molybdenum sulfide</term>
<term>Monolayer</term>
<term>Nanoelectronics</term>
<term>Nanosheet</term>
<term>Optoelectronics</term>
<term>Photoconductivity</term>
<term>Photodetector</term>
<term>Photoelectric current</term>
<term>Polyethylene</term>
<term>Theoretical study</term>
<term>Valence band</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photodétecteur</term>
<term>Nanoélectronique</term>
<term>Optoélectronique</term>
<term>Courant photoélectrique</term>
<term>Photoconductivité</term>
<term>Ethylène polymère</term>
<term>Graphène</term>
<term>Ethylène téréphtalate polymère</term>
<term>Modélisation</term>
<term>Etude théorique</term>
<term>Structure électronique</term>
<term>Masse effective</term>
<term>Bande valence</term>
<term>Mobilité porteur charge</term>
<term>Sulfure de molybdène</term>
<term>Arséniure d'indium</term>
<term>Arséniure de gallium</term>
<term>Couche monomoléculaire</term>
<term>Résultat expérimental</term>
<term>Substrat silicium</term>
<term>Substrat SiO2</term>
<term>Substrat polymère</term>
<term>MoS2</term>
<term>InGaAs</term>
<term>8560G</term>
<term>8535</term>
<term>8105T</term>
<term>8105U</term>
<term>Nanofeuillet</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The first GaS nanosheet-based photodetectors are demonstrated on both mechanically rigid and flexible substrates. Highly crystalline, exfoliated GaS nanosheets are promising for optoelectronics due to strong absorption in the UV-visible wavelength region. Photocurrent measurements of GaS nanosheet photodetectors made on SiO
<sub>2</sub>
/Si substrates and flexible polyethylene terephthalate (PET) substrates exhibit a photo-responsivity at 254 nm up to 4.2 AW
<sup>-1</sup>
and 19.2 AW
<sup>-1</sup>
, respectively, which exceeds that of graphene, MoS
<sub>2</sub>
, or other 2D material-based devices. Additionally, the linear dynamic range of the devices on SiO
<sub>2</sub>
/Si and PET substrates are 97.7 dB and 78.73 dB, respectively. Both surpass that of currently exploited InGaAs photodetectors (66 dB). Theoretical modeling of the electronic structures indicates that the reduction of the effective mass at the valence band maximum (VBM) with decreasing sheet thickness enhances the carrier mobility of the GaS nanosheets, contributing to the high photo currents. Double-peak VBMs are theoretically predicted for ultrathin GaS nanosheets (thickness less than five monolayers), which is found to promote photon absorption. These theoretical and experimental results show that GaS nanosheets are promising materials for high-performance photodetectors on both conventional silicon and flexible substrates.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PINGAN HU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LIFENG WANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>YOON (Mina)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JIA ZHANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WEI FENG</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>XIAONA WANG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ZHENZHONG WEN</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>CARLOS IDROBO (Juan)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>MIYAMOTO (Yoshiyuki)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>GEOHEGAN (David B.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>KAI XIAO</s1>
</fA11>
<fA14 i1="01">
<s1>Key Lab of Microsystem and Microstructure, Harbin Institute of Technology, Ministry of Education, No. 2 YiKuang Street</s1>
<s2>Harbin, 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road</s1>
<s2>Oak Ridge, Tennessee 37831</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Materials Science and Technology Division, Oak Ridge National Laboratory, One Bethel Valley Road</s1>
<s2>Oak Ridge, Tennessee 37831</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2</s1>
<s2>1-1-1 Umewno, Tsukuba 305-8568</s2>
<s3>JPN</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>1649-1654</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000173344350460</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>41 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0186052</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The first GaS nanosheet-based photodetectors are demonstrated on both mechanically rigid and flexible substrates. Highly crystalline, exfoliated GaS nanosheets are promising for optoelectronics due to strong absorption in the UV-visible wavelength region. Photocurrent measurements of GaS nanosheet photodetectors made on SiO
<sub>2</sub>
/Si substrates and flexible polyethylene terephthalate (PET) substrates exhibit a photo-responsivity at 254 nm up to 4.2 AW
<sup>-1</sup>
and 19.2 AW
<sup>-1</sup>
, respectively, which exceeds that of graphene, MoS
<sub>2</sub>
, or other 2D material-based devices. Additionally, the linear dynamic range of the devices on SiO
<sub>2</sub>
/Si and PET substrates are 97.7 dB and 78.73 dB, respectively. Both surpass that of currently exploited InGaAs photodetectors (66 dB). Theoretical modeling of the electronic structures indicates that the reduction of the effective mass at the valence band maximum (VBM) with decreasing sheet thickness enhances the carrier mobility of the GaS nanosheets, contributing to the high photo currents. Double-peak VBMs are theoretically predicted for ultrathin GaS nanosheets (thickness less than five monolayers), which is found to promote photon absorption. These theoretical and experimental results show that GaS nanosheets are promising materials for high-performance photodetectors on both conventional silicon and flexible substrates.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A05T</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C22</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Photodétecteur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Photodetector</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Fotodetector</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Nanoélectronique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Nanoelectronics</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Nanoelectrónica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Optoélectronique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Optoelectronics</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Optoelectrónica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Courant photoélectrique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Photoelectric current</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Corriente fotoeléctrica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Photoconductivité</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Photoconductivity</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Fotoconductividad</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Ethylène polymère</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Polyethylene</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Etileno polímero</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Graphène</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Graphene</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Graphene</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Ethylène téréphtalate polymère</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Ethylene terephthalate polymer</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Etileno tereftalato polímero</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Etude théorique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Theoretical study</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estudio teórico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Structure électronique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Electronic structure</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Estructura electrónica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Masse effective</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Effective mass</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Masa efectiva</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Bande valence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Valence band</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Banda valencia</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Charge carrier mobility</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Movilidad portador carga</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Sulfure de molybdène</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Molybdenum sulfide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Molibdeno sulfuro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Couche monomoléculaire</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Monolayer</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Capa monomolecular</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Résultat expérimental</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Experimental result</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Resultado experimental</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Substrat silicium</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Substrat SiO2</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Substrat polymère</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>MoS2</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>8560G</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>8535</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>8105T</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>8105U</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Nanofeuillet</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Nanosheet</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Nanohoja</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>168</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000235 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000235 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0186052
   |texte=   Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024